Поглощение и рассеяние рентгеновских лучей. Поглощение рентгеновского излучения веществом Массовый коэффициент поглощения рентгеновского излучения

Помимо непосредственного возбуждения атомов определяемого элемента первичным рентгеновским излучением, может наблюдаться ряд других эффектов, нарушающих линейную зависимость интенсивности характеристической линии от концентрации элемента. Интенсивность зависит не только от содержания в образце анализируемых атомов, но и от процессов поглощения и рассеяния этого вещества, которые вместе взятые дают так называемое ослабление.

ОСЛАБЛЕНИЕ

Если направленный пучок рентгеновского излучения проходит через слой вещества толщиной D и плотностью с, то его интенсивность уменьшается по экспоненциальному закону:

I = I0e-µD

где µ - коэффициент ослабления, который является параметром материала и зависит, кроме того, от длины волны рентгеновского излучения. Коэффициент µ пропорционален с и быстро возрастает с увеличением порядкового номера элемента и длины волны рентгеновского излучения. Отношение µ/с называется массовым коэффициентом ослабления. См. рис.2

Как говорилось ранее, ослабление складывается из двух физических процессов - поглощение и рассеяние, т.е. коэффициент ослабления равен:

где ф - коэффициент поглощения; у - коэффициент рассеяния.

Главным является то, что доля ф возрастает с увеличением Z и л, и что эта составляющая доминирует над у в области длин волн, типичной для рентгенофлуоресцентного анализа (за исключением самых легких элементов, таких как углерод). Поэтому в практике рентгенофлуоресцентного анализа ослабление идентично поглощению.

ПОГЛОЩЕНИЕ

Поглощение происходит в том случае, когда кванты внешнего излучения, падающие на материал, выбивают электроны из атомной оболочки.

При этом энергия квантов излучения расходуется, с одной стороны, на вырывание (работу выхода) электронов из атомов и, с другой стороны, на сообщение им кинетической энергии.

Введенный ранее коэффициент ф является функцией длины волны излучения. На рис.3 в качестве примера приведена зависимость массового коэффициента поглощения ф от л, или так называемый спектр поглощения.

Ход кривой не плавный. На спектре имеются скачки, называемые краями поглощения, которые возникают из-за квантового характера поглощения, и говорят, что спектр поглощения имеет линейчатую форму.

Краем поглощения называется индивидуальная характеристика атомов, соответствующая значению энергии, при которой происходит скачкообразное изменение коэффициента поглощения. Такая особенность поглощения имеет простое физическое объяснение. При энергиях квантов, превышающих энергию связи электронов на K - оболочке, сечение поглощения для электронов на L - оболочке имеет величину по крайней мере на порядок меньшую, чем для K - оболочки.

По мере уменьшения энергии рентгеновских квантов и приближении ее к энергии отрыва электрона с K - оболочки поглощение растет в соответствии с формулой, где коэффициент C задается для K - оболочки.

фм = CNZ4лn/A

где N - число Авогадро, Z - атомный номер поглощающего элемента, A - его атомный вес, л - длина волны, n - показатель степени, принимающий значения между 2,5 и 3,0, а C - постоянная, скачкообразно уменьшающаяся при переходе через край поглощения.

При уменьшении энергии рентгеновских квантов ниже энергии связи электрона на K - оболочке (~ 20 кэВ), происходит скачкообразное уменьшение поглощения. т. к. рентгеновское излучение с меньшей энергией может взаимодействовать только с электронами на L- и M- оболочках. В процессе дальнейшего уменьшения энергии поглощение вновь возрастает в соответствии с формулой, в которой коэффициент С задается уже для L- оболочки. Этот рост продолжается вплоть до скачков, соответствующих энергиям связи электронов на L- оболочках. Далее этот процесс происходит для электронов на M- оболочках и т.д.

РАССЕЯНИЕ

Явление, когда рентгеновский луч при взаимодействии с веществом изменяет направление, называется рассеянием. Если рассеянное излучение имеет ту же длину волны, что и первичное, то процесс называется упругим или рэлеевским рассеянием. Упругое рассеяние происходит на связанных электронах, его используют для установления кристаллической структуры вещества с помощью методов рентгеновской дифракции. Если длина волны рассеянного излучения больше длины волны первичного излучения, то процесс называют неупругим или комптоновским рассеянием. Неупругое рассеяние является результатом взаимодействия рентгеновского излучения со слабо связанными внешними электронами.

Хотя рассеяние мало по сравнению с поглощением, оно происходит во всех случаях, в том числе и при рентгенофлуоресцентном анализе. Вместе с возникающим при флуоресцентном возбуждении характеристическим рентгеновским излучением рассеянное излучение образует поле вторичного излучения, которые и фиксирует спектрометр. Однако при рентгенофлуоресцентном анализе используется главным образом характеристическое флуоресцентное излучение, рассеянное чаще всего является помехой, образующей фон, блики в спектре. Рассеянное излучение желательно иметь на возможно более низком уровне.

Некоторые эффекты взаимодействия рентгеновского излучения с веществом

Как было упомянуто выше, рентгеновские лучи способны возбуждать атомы и молекулы вещества. Это может вызывать флюоресценцию определенных веществ (например, сульфата цинка). Если параллельный пучок рентгеновских лучей направить на непрозрачные объекты, то можно наблюдать как лучи пройдут сквозь объект, поставив экран, покрытый флюоресцирующим веществом.

Флуоресцентный экран можно заменить фотографической пленкой. Рентгеновские лучи оказывают на фотографическую эмульсию такое же действие, как и свет. Оба метода используются в практической медицине.

Другим важным эффектом рентгеновского излучения является их ионизирующая способность. Это зависит от их длины волны и энергии. Этот эффект обеспечивает метод для измерения интенсивности рентгеновского излучения. Когда рентгеновские лучи проходят через ионизационную камеру, возникает электрический ток, величина которого пропорциональна интенсивности рентгеновского излучения.

При прохождении рентгеновских лучей через вещество их энергия уменьшается из-за поглощения и рассеяния. Ослабление интенсивности параллельного пучка рентгеновских лучей, проходящих через вещество, определяется законом Бугера: , где I 0 - начальная интенсивность рентгеновского излучения; I - интенсивность рентгеновских лучей, прошедших через слой вещества, d – толщина поглощающего слоя, - линейный коэффициент ослабления. Он равен сумме двух величин: t - линейного коэффициента поглощения и s - линейного коэффициента рассеяния: m = t +s

В экспериментах обнаружено, что линейный коэффициент поглощения зависит от атомного номера вещества и длины волны рентгеновских лучей:

Где - коэффициент прямой пропорциональности, - плотность вещества, Z – атомный номер элемента, - длина волны рентгеновских лучей.

Зависимость от Z очень важна с практической точки зрения. Например, коэффициент поглощения костей, которые состоят из фосфата кальция, почти в 150 раз превышает коэффициент поглощения мягких тканей (Z =20 для кальция и Z =15 для фосфора). При прохождении рентгеновских лучей через тело человека, кости четко выделяются на фоне мышц, соединительной ткани и т.п.

Известно, что пищеварительные органы имеют такую же величину коэффициента поглощения, как и другие мягкие ткани. Но тень пищевода, желудка и кишечника можно различить, если пациент примет внутрь контрастное вещество - сернокислый барий (Z= 56 для бария). Сернокислый барий очень непрозрачен для рентгеновских лучей и часто используется для рентгенологического обследования желудочно-кишечного тракта. Определенные непрозрачные смеси вводят в кровяное русло для того, чтобы исследовать состояние кровеносных сосудов, почек и т.п. Как контрастное вещество в этом случае используют йод, атомный номер которого составляет 53.



Зависимость поглощения рентгеновских лучей от Z используют также для защиты от возможного вредного действия рентгеновского излучения. Для этой цели применяют свинец, величина Z для которого равна 82.

Рентгеновские спектры бывают двух видов: сплошные и линейчатые. Сплошные спектры возникают при торможении быстрых электронов в веществе антикатода и являются обычным тормозным излучением электронов. Строение сплошного спектра не зависит от материала антикатода. Линейчатый спектр состоит из отдельных линий излучения. Он зависит от материала антикатода и полностью характеризуется им. Каждый элемент обладает своим, характерным для него линейчатым спектром. Поэтому линейчатые рентгеновские спектры называют также характеристическими.

Схему возникновения характеристического рентгеновского излучения можно изобразить следующим образом.

Между рентгеновскими линейными спектрами и оптическими линейчатыми спектрами существует три коренных различия. Во-первых, частота рентгеновского излучения в тысячи раз больше, чем частота оптического излучения. Это означает, что энергия рентгеновского кванта в тысячи раз больше оптического кванта. Во-вторых, рентгеновские спектры различных элементов имеют одинаковую структуру, в то время как структура оптических спектров различных элементов существенно различается. В-третьих, оптические спектры поглощения состоят из отдельных линий, совпадающих с линиями излучения главной серии соответствующего элемента. Рентгеновские спектры поглощения не похожи на рентгеновские спектры испускания: они состоят из нескольких полос с резким длинноволновым краем.


Все эти особенности рентгеновских спектров объясняются механизмом испускания, который находится в полном согласии со строением электронных оболочек. Электрон, падающий на материал антикатода, сталкиваясь с атомами антикатода, может выбить электрон с одной из внутренних оболочек атома. В результате этого получается атом, у которого отсутствует электрон на одной из внутренних оболочек. Следовательно, электроны более внешних оболочек могут переходить на освободившееся место. В результате этого испускается квант, который и является квантом рентгеновского излучения.

электронами и возмущения со стороны других электронов. При переходе электрона на освободившееся место на внутренней оболочке с внешней оболочки излучается квант, частота которого

Поскольку Z для тяжелых атомов велико, энергия термов также велика по сравнению с энергией оптических термов. Следовательно, и частоты излучения велики по сравнению с оптическими частотами. Этим объясняется большая энергия рентгеновских квантов.

Поскольку внутренние оболочки атомов имеют одинаковое строение, все тяжелые атомы должны иметь одинаково построенные рентгеновские спектры, лишь у более тяжелых атомов спектр смещается в сторону больших частот.

Это полностью подтверждается экспериментом и доказывает, что внутренние оболочки атомов имеют одинаковое строение, как это и предполагалось при объяснении периодической системы элементов.

В 1913 г. Английский физик Мозли установил закон, связывающий длины волн линий рентгеновского спектра с атомным номером элемента Z. Согласно этому закону:

Здесь R– постоянная Ридберга (R=1,1×10 7 1/м), n– номер энергетического уровня, на который перешел электрон, k– номер энергетического уровня, с которого перешел электрон.

Постоянная sназывается постоянной экранирования. Электроны, совершающие переходы при испускании рентгеновского излучения, находятся под воздействием ядра, притяжение которого несколько ослаблено действием остальных окружающих его электронов. Это экранирующее действие и находит свое выражение в необходимости вычесть из z некоторую величину.

Закон Мозли позволяет определить заряд ядра, зная длину волны линий, характеристического рентгеновского излучения. Именно исследования характеристического рентгеновского излучения позволили расставить окончательно элементы в таблице Менделеева.

Закон Мозли показывает, что корни квадратные из рентгеновских термов зависят линейно от зарядового числа Z элементов.

Если электрон выбит из К-оболочки (n =1), то при переходе на освободившееся место электронов с других оболочек излучается рентгеновская К-серия. При переходе электронов на освободившееся место в L-оболочке (n =2) излучается L-серия и т.д. Таким образом, экспериментально наблюдаемая одинаковость структуры рентгеновских спектров и закон Мозли подтверждают представления, употребляемые при интерпретации периодической системы элементов.

Особенность рентгеновских спектров поглощения также объясняется фактом связи испускания рентгеновского излучения с внутренними оболочками атома. В результате поглощения рентгеновского кванта атомом может произойти вырывание электрона с одной из внутренних оболочек атома, т.е. процесс фотоионизации. Каждая из полос поглощения соответствует вырыванию электрона из соответствующей оболочки атома. Полоса К (рис.9.6.) образуется в результате выбивания электрона из самой внутренней оболочки атома – К-оболочки, полоса L – из второй оболочки и т.д. Резкий длинноволновой край каждой полосы соответствует началу процесса фотоионизации, т.е. вырыванию электрона из соответствующей оболочки без сообщения ему дополнительной кинетической энергии. Длинноволновая часть полосы поглощения соответствует актам фотоионизации с сообщением электрону избыточной кинетической энергии. Структуры рентгеновских спектров поглощения тяжелых элементов аналогичны друг другу и подтверждают одинаковость строения внутренних оболочек атомов тяжелых элементов. На рис.9.7. видно, что каждая из полос поглощения имеет тонкую структуру: в К-полосе есть один максимум, в L-полосе – три максимума, в М-полосе – пять максимумов. Это объясняется тонкой структурой рентгеновских термов.

Если электрон наталкивается на относительно тяжелое ядро, то он тормозится, а его кинетическая энергия выделяется в виде рентгеновского фотона примерно той же энергии. Если же он пролетит мимо ядра, то потеряет лишь часть своей энергии, а остальную будет передавать попадающимся на его пути другим атомам. Каждый акт потери энергии ведет к излучению фотона с какой-то энергией. Возникает непрерывный рентгеновский спектр, верхняя граница которого соответствует энергии самого быстрого электрона. Таков механизм образования непрерывного спектра, а максимальная энергия (или минимальная длина волны), фиксирующая границу непрерывного спектра, пропорциональна ускоряющему напряжению, которым определяется скорость налетающих электронов. Спектральные линии характеризуют материал бомбардируемой мишени, а непрерывный спектр определяется энергией электронного пучка и практически не зависит от материала мишени.

Рентгеновское излучение можно получать не только электронной бомбардировкой, но и облучением мишени рентгеновским же излучением от другого источника. В этом случае, однако, большая часть энергии падающего пучка переходит в характеристический рентгеновский спектр и очень малая ее доля приходится на непрерывный. Очевидно, что пучок падающего рентгеновского излучения должен содержать фотоны, энергия которых достаточна для возбуждения характеристических линий бомбардируемого элемента. Высокий процент энергии, приходящейся на характеристический спектр, делает такой способ возбуждения рентгеновского излучения удобным для научных исследований.

Рентгеновские трубки. Чтобы получать рентгеновское излучение за счет взаимодействия электронов с веществом, нужно иметь источник электронов, средства их ускорения до больших скоростей и мишень, способную выдерживать электронную бомбардировку и давать рентгеновское излучение нужной интенсивности. Устройство, в котором все это есть, называется рентгеновской трубкой. Ранние исследователи пользовались «глубоко вакуумированными» трубками типа современных газоразрядных. Вакуум в них был не очень высоким.

В газоразрядных трубках содержится небольшое количество газа, и когда на электроды трубки подается большая разность потенциалов, атомы газа превращаются в положительные и отрицательные ионы. Положительные движутся к отрицательному электроду (катоду) и, падая на него, выбивают из него электроны, а они, в свою очередь, движутся к положительному электроду (аноду) и, бомбардируя его, создают поток рентгеновских фотонов.

В современной рентгеновской трубке, разработанной Кулиджем, источником электронов является вольфрамовый катод, нагреваемый до высокой температуры. Электроны ускоряются до больших скоростей высокой разностью потенциалов между анодом (или антикатодом) и катодом. Поскольку электроны должны достичь анода без столкновений с атомами, необходим очень высокий вакуум, для чего нужно хорошо откачать трубку. Этим также снижаются вероятность ионизации оставшихся атомов газа и обусловленные ею побочные токи.

Электроны фокусируются на аноде с помощью электрода особой формы, окружающего катод. Этот электрод называется фокусирующим и вместе с катодом образует «электронный прожектор» трубки. Подвергаемый электронной бомбардировке анод должен быть изготовлен из тугоплавкого материала, поскольку большая часть кинетической энергии бомбардирующих электронов превращается в тепло. Кроме того, желательно, чтобы анод был из материала с большим атомным номером, т.к. выход рентгеновского излучения растет с увеличением атомного номера. В качестве материала анода чаще всего выбирается вольфрам, атомный номер которого равен 74.

Конструкция рентгеновских трубок может быть разной в зависимости от условий применения и предъявляемых требований.

Принципы дифракции рентгеновского излучения. Чтобы понять явление дифракции рентгеновского излучения, нужно рассмотреть по порядку: во-первых, спектр рентгеновского излучения, во-вторых, природу кристаллической структуры и, в-третьих, само явление дифракции.

Как уже говорилось выше, характеристическое рентгеновское излучение состоит из серий спектральных линий высокой степени монохроматичности, определяемых материалом анода. С помощью фильтров можно выделить наиболее интенсивные из них. Поэтому, выбрав соответствующим образом материал анода, можно получить источник почти монохроматического излучения с очень точно определенным значением длины волны. Длины волн характеристического излучения обычно лежат в диапазоне от 2,285 для хрома до 0,558 для серебра (значения для различных элементов известны с точностью до шести значащих цифр). Характеристический спектр накладывается на непрерывный «белый» спектр значительно меньшей интенсивности, обусловленный торможением в аноде падающих электронов. Таким образом, от каждого анода можно получить два типа излучения: характеристическое и тормозное, каждое из которых играет по-своему важную роль.

Атомы в кристаллической структуре располагаются с правильной периодичностью, образуя последовательность одинаковых ячеек – пространственную решетку. Некоторые решетки (например, для большинства обычных металлов) довольно просты, а другие (например, для молекул белков) весьма сложны.

Для кристаллической структуры характерно следующее: если от некоторой заданной точки одной ячейки сместиться к соответствующей точке соседней ячейки, то обнаружится точно такое же атомное окружение. И если некоторый атом расположен в той или иной точке одной ячейки, то в эквивалентной ей точке любой соседней ячейки будет находиться такой же атом. Этот принцип строго справедлив для совершенного, идеально упорядоченного кристалла. Однако многие кристаллы (например, металлические твердые растворы) являются в той или иной степени неупорядоченными, т.е. кристаллографически эквивалентные места могут быть заняты разными атомами. В этих случаях определяется не положение каждого атома, а лишь положение атома, «статистически усредненного» по большому количеству частиц (или ячеек).

Дифракция рентгеновского излучения – это коллективное явление рассеяния, при котором роль отверстий и центров рассеяния играют периодически расположенные атомы кристаллической структуры. Взаимное усиление их изображений при определенных углах дает дифракционную картину, аналогичную той, которая возникла бы при дифракции света на трехмерной дифракционной решетке.

Рассеяние происходит благодаря взаимодействию падающего рентгеновского излучения с электронами в кристалле. Вследствие того, что длина волны рентгеновского излучения того же порядка, что и размеры атома, длина волны рассеянного рентгеновского излучения та же, что и падающего. Этот процесс является результатом вынужденных колебаний электронов под действием падающего рентгеновского излучения.

Рассмотрим теперь атом с облаком связанных электронов (окружающих ядро), на который падает рентгеновское излучение. Электроны во всех направлениях одновременно рассеивают падающее и испускают собственное рентгеновское излучение той же длины волны, хотя и разной интенсивности. Интенсивность рассеянного излучения связана с атомным номером элемента, т.к. атомный номер равен числу орбитальных электронов, которые могут участвовать в рассеянии. (Эта зависимость интенсивности от атомного номера рассеивающего элемента и от направления, в котором измеряется интенсивность, характеризуется атомным фактором рассеяния, который играет чрезвычайно важную роль в анализе структуры кристаллов.)

Выберем в кристаллической структуре линейную цепочку атомов, расположенных на одинаковом расстоянии друг от друга, и рассмотрим их дифракционную картину. Уже отмечалось, что рентгеновский спектр складывается из непрерывной части («континуума») и набора более интенсивных линий, характеристических для того элемента, который является материалом анода. Допустим, мы отфильтровали непрерывный спектр и получили почти монохроматический пучок рентгеновского излучения, направленный на нашу линейную цепочку атомов. Условие усиления (усиливающей интерференции) выполняется, если разность хода волн, рассеянных соседними атомами, кратна длины волны. Если пучок падает под углом a 0 к линии атомов, разделенных интервалами a (период), то для угла дифракции a разность хода, соответствующая усилению, запишется в виде

a (cos a – cosa 0) = hl ,

где l – длина волны, а h – целое число.

Чтобы распространить этот подход на трехмерный кристалл, необходимо лишь выбрать ряды атомов по двум другим направлениям в кристалле и решить совместно полученные таким образом три уравнения для трех кристаллических осей с периодами a , b и c . Два других уравнения имеют вид

Это – три фундаментальных уравнения Лауэ для дифракции рентгеновского излучения, причем числа h , k и c – индексы Миллера для плоскости дифракции. Рассматривая любое из уравнений Лауэ, например первое, можно заметить, что, поскольку a , a 0, l – константы, а h = 0, 1, 2, ..., его решение можно представить в виде набора конусов с общей осью a (рис. 5). То же самое верно для направлений b и c .

В общем случае трехмерного рассеяния (дифракция) три уравнения Лауэ должны иметь общее решение, т.е. три дифракционных конуса, расположенных на каждой из осей, должны пересекаться; общая линия пересечения показана на рис. 6. Совместное решение уравнений приводит к закону Брэгга – Вульфа:

l = 2(d /n )sinq ,

где d – расстояние между плоскостями с индексами h , k и c (период), n = 1, 2, ... – целые числа (порядок дифракции), а q – угол, образуемый падающим пучком (а также и дифрагирующим) с плоскостью кристалла, в которой происходит дифракция.

Анализируя уравнение закона Брэгга – Вульфа для монокристалла, расположенного на пути монохроматического пучка рентгеновского излучения, можно заключить, что дифракцию непросто наблюдать, т.к. величины l и q фиксированы, а sinq < 1. При таких условиях, чтобы имела место дифракция для рентгеновского излучения с длиной волны l , плоскость кристалла с периодом d должна быть повернута на правильный угол q . Для того чтобы реализовать это маловероятное событие, применяются различные методики.

Прохождение рентгеновского излучения через вещество образца сопровождается взаимодействием излучения с этим веществом. Известны три вида этого взаимодействия: (Слайд 17)

1. Рассеяние рентгеновского излучения (без изменения и с изменением длины волны);

2. Фотоэлектрический эффект;

3. Образование электрон-позитронных пар (этот эффект имеет место только при энергии квантов больше 1 Мэв).

Рассеяние рентгеновского излучения. Вещество, которое подвергается действию рентгеновского излучения, испускает вторичное излучение, длина волны которого либо равна длине волны падающих лучей (когерентное рассеяние), либо незначительно отличается. В первом случае, переменное электромагнитное поле, создаваемое пучком рентгеновских лучей, вызывает колебательное движение электронов облучаемого вещества, и они становятся источниками когерентного излучения. Ввиду когерентности лучи, рассеиваемые различными атомами, могут интерферировать. Расстояния же между атомными плоскостями в кристаллических веществах сравнимы с длинами волн рентгеновских лучей. Поэтому кристалл служит дифракционной решеткой для таких когерентных рентгеновских лучей.

Эффект Комптона. При комптоновском рассеянии падающий квант упруго соударяется с электронами вещества. В результате часть энергии затрачивается на увеличение кинетической энергии электрона и длина волны излучения увеличивается. Поэтому комптоновское рассеяние некогерентно, и рассеянное излучение не может интерферировать. Поэтому мы не будем на нем останавливаться, тем более, что это рассеяние незначительно для сравнительно мягкого излучения, используемого в структурном и фазовом анализе.

Фотоэффект. Этот процесс имеет место только в случае жесткого первичного излучения. В этом случае, взаимодействуя с атомами вещества, рентгеновские лучи могут выбивать электроны за пределы атома, ионизируя его. При большой кинетической энергии выбитых электронов они сами могут являться источником нехарактеристического рентгеновского излучения. То есть этот вид излучения вносит вклад только в сплошное (белое) излучение.

Суммарное поглощение рентгеновского излучения веществом.

Проходя через вещество, рентгеновские лучи вызывают ионизацию атомов, возбуждение в них флуоресцентного излучения и образование Оже-электронов. Эти процессы ответственны за поглощение рентгеновских лучей. Кроме того, интенсивность лучей, проходящих через вещество в направлении падающего пучка, уменьшается из-за рассеяния его электронами вещества по всем направлениям. Наконец, рентгеновские кванты очень большой энергии (больше 1 МэВ), пролетая около ядер, вызывают появление электронно-позитронных пар. Все это уменьшает интенсивность проходящего пучка тем больше, чем толще слой вещества.


Общий закон, количественно определяющий ослабление любых однородных лучей в поглощающем веществе можно сформулировать следующим образом:

«В равных толщинах одного и того же однородного вещества поглощаются равные доли энергии одного и того же излучения».

Если интенсивность лучей, падающих на вещество, обозначить через I 0 , а их интенсивность после прохождения через пластинку из поглощающего вещества как I, то этот закон можно выразить в следующем виде:

Возьмем тонкий однородный экран, проходя через который монохроматический пучок с сечением, равным единице, теряет энергию dI. Она пропорциональна толщине экрана dx и интенсивности пучка I 0 . Получим, что:

dI = - μ I 0 dx

где: dx – толщина слоя вещества;

Постоянна величина μ предствляет собой натуральный логарифм числа, характеризующего уменьшение интенсивности при прохождении лучей через слой данного вещества единичной толщины:

μ = ln (I 0 /I) (при dх =1).

Называется этот коэффициент μ –линейным коэффициентом поглощения для данного вещества, или линейным коэффициентом ослабления лучей.

Решая это уравнение, получим:

I = I 0 exp (-μ x)

Где х – толщина слоя поглощения.

Коэффициент поглощения можно рассматривать как сумму коэффициентов собственного поглощения τ и коэффициента рассеяния σ.

μ = τ + σ

Удобнее пользоваться массовыми коэффициентами поглощения, т. к. коэффициенты линейного поглощения пропорциональны плотности вещества образца.

μ/ρ = τ/ρ + σ/ρ

В интересующем нас интервале длин волн массовый коэффициент рассеяния много меньше коэффициента собственного поглощения τ/ρ, поэтому приближенно принимают что:

Если известен состав вещества образца, то можно вычислить для него μ/ρ, зная содержание компонентов в весовых (массовых) процентах.

Рассматриваемые коэффициенты поглощения зависят от порядкового номера вещества и от длины волны рентгеновского излучения. Существуют специальные таблицы. Эти данные необходимы, например, для определения глубины проникновения рентгеновского излучения в исследуемое вещество при заданной геометрии съемки рентгенограммы.

Теперь давайте посмотрим, зачем это нужно. На слайде 26 показан спектр поглощения рентгеновского излучения в никеле (зависимость коэффициента поглощения μ/ρ от длины волны рентгеновского излучения). Видно, что при определенных значениях длин волн происходит резкое изменение величины коэффициента поглощения.

В интервале между скачками коэффициент поглощения увеличивается с увеличением длины волны по приближенной зависимости:

где: k – коэффициент пропорциональности, а Z – порядковый номер элемента.

Длины волн, соответствующие скачкам коэффициента поглощения, называются краями полос поглощения. Они имеют тонкую структуру, которую мы не будем рассматривать.

Как уже указывалось, поглощение рентгеновского излучения, в основном, обусловлено выбиванием электронов с внутренних или внешних электронных оболочек атомов. Если энергия излучения больше или равна энергии, необходимой для удаления электрона с данной оболочки, то происходит поглощение, вызванное этим процессом. Если же энергия излучения меньше, то поглощение происходит только за счет более внешних оболочек. Поэтому различают K-, L-, M- и т.д. края полос поглощения.

Коэффициент k в приведенном уравнении приблизительно равен 7х10 -3 для длин волн, меньших К-края полосы поглощения исследуемого вещества. В интервале между K- и L- краями полос поглощения он равен примерно 9х10 -4 . То есть, при переходе через К- край полосы поглощения коэффициента поглощения меняется примерно в 8 раз. Это и вызывает скачок на спектре.

Наличие этих скачков учитывается при выборе излучения для съемки рентгенограмм. Вторичное рентгеновское излучение краев полос поглощения вызывает значительное увеличение фона на рентгенограммах, и поэтому нежелательно. Поэтому для съемки выбирают излучение или с длинй волны, значительно меньшей λ края, или большей λ края. (слайд 28 а и б).

Наличие краев полос поглощения используется и для ослабления β – излучения. Для этого на пути пучка излучения К – серии ставится тонкая пластинка из материала с краем полосы поглощения, лежащим между α и β -линиями используемого излучения. (Слайд 28 г).

Обычно в качестве фильтра может быть использована фольга элемента с порядковым номером на единицу меньше порядкового номера анода.

Но в реальности не все так просто. Например, для съемки рентгенограммы двуокиси титана TiO 2 можно использовать излучение от молибденовой трубки, так как длина волны рентгеновского излучения в этом случае равна 0,709 А, то есть много меньше края полосы поглощения титана (2,50 А). То есть, мы реализуем ситуацию положения (а) на слайде. Однако использование для фазового анализа излучения этой трубки нежелательно. Из-за малой длины волны разрешающая способность и точность определения межплоскостных расстояний будет невысокой. Предпочтение следует отдать излучению с большей длиной волны. Например, - от медной трубки. Длина волны CuK α равна 1,54А, также меньше края полосы поглощения титана. В качестве фильтра ставят никелевую фольгу. Порядковый номер меди 29, а у никеля 28. Для ослабления вторичного титанового излучения поверх никеля помещают еще алюминиевую фольгу. Более мягкое титановое излучение будет поглощаться значительно сильнее, чем более жесткое медное. То есть, процесс выбора длины волны и материала фильтра не очень прост.

2. ИСТОЧНИКИ РЕНТГЕНОВСКОГО ИЗЛУЧЕНИЯ

Основные способы получения рентгеновских лучей для структурных исследований связаны с использованием потока быстро летящих электронов. Ускорители электронов – бетатроны и линейные – используются для получения мощного коротковолнового рентгеновского излучения, применяемого, главным образом, в дефектоскопии.

Но ускорители электронов громоздки, сложны в настройке и используются преимущественно в стационарных установках. Наиболее распространенным источником рентгеновских лучей является рентгеновская трубка.

По принципу получения электронных пучков рентгеновские трубки делятся на трубки с горячим катодом, (свободные электроны возникают в результате термоэлектронной эмиссии (рис. 3)) и трубки с холодным катодом (свободные электроны возникают в результате автоэлектронной эмиссии). Рентгеновские трубки обоих типов могут быть запаянными с постоянным вакуумом и разборными, откачиваемыми вакуумными насосами.

Наиболее распространены запаянные рентгеновские трубки с горячим катодом. Они состоят из стеклянной колбы и двух электродов – катода и анода (рис. 5). В колбе создается высокий вакуум (10-7 – 10-8 мм рт. ст.), обеспечивающий свободное движение электронов от катода к аноду, тепловую, химическую и электрическую изоляцию раскаленного катода.

Катод рентгеновской трубки состоит из нити накала и фокусирующего колпачка. Форма нити и колпачка определяется заданной формой фокусного пятна на аноде трубки – круглой или линейчатой. Нить из вольфрамовой спирали разогревается электрическим током до 2000 – 2200 С; для повышения эмиссионных характеристик нить часто покрывают соединениями тория.

Размеры фокусного пятна определяют оптические свойства рентгеновской трубки. Резкость изображения при просвечивании, а также точность рентгеноструктурного анализа тем выше, чем меньше размеры фокуса. Рентгеновские трубки с малым размером фокуса называются острофокусными.

Анод рентгеновской трубки представляет собой медный цилиндр, в торец которого впрессовано зеркало анода – пластинка из материала, в котором происходит торможение электронов. В рентгеновских трубках для просвечивания зеркало изготовлено из вольфрама, для рентгеноструктурного анализа – из того металла, характеристическое излучение которого будет использовано. Торец анода в рентгеновских трубках для структурного анализа срезан под определенным углом к оси анода (пучку электронов). Это делается с целью получить выходящий из трубки пучок с максимальной интенсивностью.

При ударе электронов о зеркало анода приблизительно 96% их энергии превращается в тепло, поэтому анодный цилиндр охлаждается протекающими водой или маслом.

Анод защищен специальным медным чехлом для задержания отраженных от анода электронов и защиты от неиспользуемых рентгеновских лучей. В этом чехле есть одно или несколько окошек для выхода рентгеновских лучей, в которые вставляются тонкие пластинки из бериллия, который практически не поглощает рентгеновское излучение, генерируемое в трубке.

Предельная мощность рентгеновской трубки P определяется мощностью проходящего через нее электрического тока:

где U – максимальное напряжение, прилагаемое к рентгеновской трубке; I – максимальный ток, идущий через рентгеновскую трубку.

Реальная предельная мощность зависит от площади фокусного пятна (т. е. удельной мощности), материала анода и продолжительности работы трубки. Кратковременные нагрузки могут быть в десятки раз выше длительных нагрузок.

Практически измеряемый ток через рентгеновскую трубку появляется лишь при достижении током накала определенной величины, соответствующей температуре нагрева нити 2000–2100 С (рис. 6 а); повышение тока накала резко увеличивает температуру и количество испускаемых нитью электронов (эмиссионный ток). При постоянном токе накала и при низких напряжениях на анод попадают не все электроны эмиссии, а лишь их часть, тем большая, чем больше анодное напряжение. При определенном напряжении, зависящем от тока накала, все электроны эмиссии попадают на анод (режим насыщения), поэтому дальнейшее увеличение анодного напряжения не увеличивает анодный ток (он равен эмиссионному). Это предельное значение анодного тока называют током насыщения, и он тем выше, чем больше ток накала (рис. 6 б). Рентгеновские трубки работают в режиме насыщения при напряжениях в 3–4 раза выше номинального, т. е. необходимого для установления тока насыщения. Поэтому анодный ток регулируют в широких пределах, незначительно изменяя ток накала.

В обозначениях рентгеновских трубок для структурного анализа вместо анодного напряжения указывается материал зеркала анода, в качестве которого используются Cr, Fe, Co, Ni, Cu, Mo, Ag, W и некоторые другие чистые металлы. (Каждая, естественно, имеет свою длину волны характеристического излучения). Например, трубка 0,7БСВ-2-Со имеет длительную мощность 0,7 кВт, безопасна, предназначена для структурного анализа, водяное охлаждение, тип 2, кобальтовый анод.

РЕГИСТРАЦИЯ РЕНТГЕНОВСКОГО ИЗЛУЧЕНИЯ.

Для регистрации рентгеновских лучей применяются фотографический, люминесцентный, сцинтилляционный, электрофотографический и ионизационный методы.

Исторически первым, и до недавнего времени наиболее используемым был фотографический метод.

Фотографический метод регистрации рентгеновских лучей широко распространен и в настоящее время. Он обладает высокой чувствительностью и документальностью, но требует использования специальных фотоматериалов и их трудоемкой обработки. Рентгеновские пленки имеют двухсторонний слой эмульсии, содержащий значительно больше бромистого серебра, чем обычные фотоматериалы. Фотоэмульсия состоит из мельчайших (~ 1 мкм) кристалликов AgBr с присадками небольших количеств серы, что создает структурные дефекты. Поэтому возникают центры возбуждения скрытого изображения. При поглощении квантов рентгеновских лучей с энергией ν = ε h в эмульсии, как и при действии видимого света, идут процессы по схеме:

AgBr + h ν → Ag + Br.

Скопление 20-100 атомов Ag образует устойчивый центр скрытого изображения, который способен проявляться под действием фотореагента – проявителя. Кристаллики, содержащие центры скрытого изображения, восстанавливаются до металлического серебра. Кристаллики AgBr, не содержащие таких центров и не восстановленные проявителем, вымываются из эмульсии закрепляющим раствором. В результате на фотопленке остаются только зерна металлического серебра. Число таких зерен и определяет плотность почернения фотоэмульсии, которое пропорционально экспозиции – произведению интенсивности излучения на время облучения.

Оценку плотности почернения на рентгенограммах производят визуально или более точно с помощью микрофотометров, которые позволяют записать и рассчитать кривую распределения плотности почернения.

Люминесцентный метод наблюдения изображения на светящемся экране (рентгеноскопия) обладает очень большой производительностью, не требует затрат на фотоматериалы. Этот метод основан на свечении под действием рентгеновских лучей некоторых веществ и особенно люминофоров – веществ, дающих большой выход видимого излучения (флуоресценцию).

Наилучшим люминофором с желто-зеленым свечением является смесь 50% ZnS+50% CdS. Подобные люминофоры используют для изготовления экранов визуального наблюдения изображений в рентгеновских лучах (экраны для просвечивания в дефектоскопии и медицинской диагностике). Небольшие экраны применяют для настройки рентгеновских камер и юстировки гониометров рентгеновских дифрактометров. Люминофор CaWO4 (с сине-фиолетовым свечением) применяют для усиления фотографического действия рентгеновских лучей. Для этого экран плотно прижимают к эмульсии фотографической пленки, что позволяет резко уменьшить экспозицию при просвечивании (флюорография).

Сцинтилляционный счетчик представляет собой сочетание люминесцентного кристалла (NaI с примесью активатора из талия Tl) и фотоэлектронного умножителя (ФЭУ).

Проникая в сцинтиллятор, квант рентгеновского излучения поглощается люминофором, в результате чего образуется фотоэлектрон. Проходя через вещество кристалла этот электрон ионизирует большое количество атомов. Ионизированные атомы, возвращаясь в стабильное состояние, испускают фотоны ультрафиолетового света. Эти фотоны, попадая на фотокатод ФЭУ, выбивают из него электроны, котрые, ускоряясь в электрическом поле фотоумножителя, попадают на первый эмиттер. Каждый электрон выбивает из материала покрытия эмиттера несколько электронов, и весь процесс повторяется на следующем эмиттере и так далее. Современные ФЭУ состоят из 8 – 15 каскадов, их полное усиление доходит до 10 7 – 10 8 .

На каждый каскад подается напряжение 150-200 вольт. Общее напряжение на ФЭУ 600 – 2000В. На выходе ФЭУ возникает импульс напряжения, пропорциональный энергии регистрируемого кванта. Например, для Кα меди амплитуда этого импульса равна 0,01 В. Поэтому для регистрации таких импульсов используются усилители с усилением порядка тысячи.

Электрофотографический метод (ксерография) сохраняет многие преимущества фотометода, но более экономичен. Принцип его такой же, как у множительных аппаратов. Этот метод пока не нашел широкого применения в практике структурных исследований, но для решения задач дефектоскопии, особенно при микродефектоскопии на основе так называемых рентгеновских микроскопов, он начинает использоваться.

Ионизационный метод позволяет точно измерять интенсивность рентгеновских лучей, но измерение проводится на небольшой площади, определяемой размерами входного окна счетчика и измерительных щелей. Поэтому для измерения пространственного распределения интенсивности рентгеновских лучей необходимо сканирование – перемещение счетчика по всей области углов рассеяния.

Это ограничивает применение метода в дефектоскопии, где он широко используется только для измерения толщины, однако в рентгеноструктурном анализе этот метод практически вытесняет все остальные, несмотря на необходимость использования дорогостоящей электронной аппаратуры.

Ионизационный метод основан на ионизации атомов вещества при взаимодействии с квантами рентгеновских лучей. Если ионизация газа происходит в поле плоского конденсатора, то образовавшиеся ионы движутся к соответствующим электродам, и возникает ионизационный ток. При увеличении напряженности электрического поля на обкладках конденсатора скорость ионов увеличивается, поэтому уменьшается вероятность их нейтрализации при столкновении противоположных ионов, следовательно, возрастает ионизационный ток (рис. 7). При напряжении U > U 1 нейтрализация становится ничтожной, и ионизационный ток достигает насыщения.

При дальнейшем увеличении напряжения до U = U 2 ионизационный ток не увеличивается, возрастает лишь скорость ионов. При U > U 2 скорость ионов становится настолько большой, что происходит ударная ионизация молекул газа. Фотоэлектроны, образовавшиеся при взаимодействии излучения с атомами газа и потерявшие скорость при соударениях, не рекомбинируют, а вновь ускоряются, получая кинетическую энергию, достаточную для ионизации газа и создания новых пар ион – электрон. В результате этих процессов ударная ионизация происходит снова и снова и количество электронов лавинообразно растет. Ток начинает линейно возрастать с увеличением напряжения за счет так называемого газового усиления. Коэффициент усиления при напряжениях до U ≤ U 3 может достигать 10 2 -10 4 (область полной пропорциональности).

В этой области существуют два вида разрядов: несамостоятельный и самостоятельный. В области U 2 - U 3 лавины электронов быстро затухают и разряд прекращается, как только все ионы и электроны достигают катода и анода. Разряд существует только до тех пор, пока в счетчик попадает излучение. Это несамостоятельный разряд.

Дальнейшее повышение напряжения вызывает самостоятельный разряд.

При U > U 3 нарушается линейность газового усиления (область неполной пропорциональности). При U > U 4 возникает лавинный разряд. Лавинообразование идет также под действием фотоэлектронов, образующихся за счет фотоэффекта на катоде. Катод облучается ультрафиолетовым излучением, образующимся при рекомбинации ионов. Разряд мгновенно распространяется по всему объему газа и для его поддержания не требуется новых квантов излучения.

1. Источники рентгеновского излучения.

2. Тормозное рентгеновское излучение.

3. Характеристическое рентгеновское излучение. Закон Мозли.

4. Взаимодействие рентгеновского излучения с веществом. Закон ослабления.

5. Физические основы использования рентгеновского излучения в медицине.

6. Основные понятия и формулы.

7. Задачи.

Рентгеновское излучение - электромагнитные волны с длиной волны от 100 до 10 -3 нм. На шкале электромагнитных волн рентгеновское излучение занимает область между УФ-излучением и γ -излучением. Рентгеновское излучение (Х-лучи) открыты в 1895 г. К. Рентгеном, который в 1901 г. стал первым Нобелевским лауреатом по физике.

32.1. Источники рентгеновского излучения

Естественными источниками рентгеновского излучения являются некоторые радиоактивные изотопы (например, 55 Fe). Искусственными источниками мощного рентгеновского излучения являются рентгеновские трубки (рис. 32.1).

Рис. 32.1. Устройство рентгеновской трубки

Рентгеновская трубка представляет собой вакуумированную стеклянную колбу с двумя электродами: анодом А и катодом К, между которыми создается высокое напряжение U (1-500 кВ). Катод представляет собой спираль, нагреваемую электрическим током. Электроны, испущенные нагретым катодом (термоэлектронная эмиссия), разгоняются электрическим полем до больших скоростей (для этого и нужно высокое напряжение) и попадают на анод трубки. При взаимодействии этих электронов с веществом анода возникают два вида рентгеновского излучения: тормозное и характеристическое.

Рабочая поверхность анода расположена под некоторым углом к направлению электронного пучка, для того чтобы создать требуемое направление рентгеновских лучей.

В рентгеновское излучение превращается примерно 1 % кинетической энергии электронов. Остальная часть энергии выделяется в виде тепла. Поэтому рабочая поверхность анода выполняется из тугоплавкого материала.

32.2. Тормозное рентгеновское излучение

Электрон, движущийся в некоторой среде, теряет свою скорость. При этом возникает отрицательное ускорение. Согласно теории Максвелла, любое ускоренное движение заряженной частицы сопровождается электромагнитным излучением. Излучение, возникающее при торможении электрона в веществе анода, называют тормозным рентгеновским излучением.

Свойства тормозного излучения определяются следующими факторами.

1. Излучение испускается отдельными квантами, энергии которых связаны с частотой формулой (26.10)

где ν - частота, λ - длина волны.

2. Все электроны, достигающие анода, имеют одинаковую кинетическую энергию, равную работе электрического поля между анодом и катодом:

где е - заряд электрона, U - ускоряющее напряжение.

3. Кинетическая энергия электрона частично передается веществу и идет на его нагревание (Q), а частично расходуется на создание рентгеновского кванта:

4. Соотношение между Q и hv случайно.

В силу последнего свойства (4) кванты, порожденные различными электронами, имеют различные частоты и длины волн. Поэтому спектр тормозного рентгеновского излучения является сплошным. Типичный вид спектральной плотности потока рентгеновского излучения (Φ λ = άΦ/άλ) показан на рис. 32.2.

Рис. 32.2. Спектр тормозного рентгеновского излучения

Со стороны длинных волн спектр ограничен длиной волны 100 нм, которая является границей рентгеновского излучения. Со стороны коротких волн спектр ограничен длиной волны λ min . Согласно формуле (32.2) минимальной длине волны соответствует случай Q = 0 (кинетическая энергия электрона полностью переходит в энергию кванта):

Расчеты показывают, что поток (Φ) тормозного рентгеновского излучения прямо пропорционален квадрату напряжения U между

анодом и катодом, силе тока I в трубке и атомному номеру Z вещества анода:

Спектры тормозного рентгеновского излучения при различных напряжениях, различных температурах катода и различных веществах анода показаны на рис. 32.3.

Рис. 32.3. Спектр тормозного рентгеновского излучения (Φ λ):

а - при различном напряжении U в трубке; б - при различной температуре T

катода; в - при различных веществах анода отличающихся параметром Z

При увеличении анодного напряжения значение λ min смещается в сторону коротких длин волн. Одновременно возрастает и высота спектральной кривой (рис. 32.3, а).

При увеличении температуры катода возрастает эмиссия электронов. Соответственно увеличивается и ток I в трубке. Высота спектральной кривой увеличивается, но спектральный состав излучения не изменяется (рис. 32.3, б).

При изменении материала анода высота спектральной кривой изменяется пропорционально атомному номеру Z (рис. 32.3, в).

32.3. Характеристическое рентгеновское излучение. Закон Мозли

При взаимодействии катодных электронов с атомами анода наряду с тормозным рентгеновским излучением возникает рентгеновское излучение, спектр которого состоит из отдельных линий. Это излучение

имеет следующее происхождение. Некоторые катодные электроны проникают в глубь атома и выбивают электроны с его внутренних оболочек. Образовавшиеся при этом вакантные места заполняются электронами с верхних оболочек, в результате чего высвечиваются кванты излучения. Это излучение содержит дискретный набор частот, определяемый материалом анода, и называется характеристическим излучением. Полный спектр рентгеновской трубки представляет собой наложение характеристического спектра на спектр тормозного излучения (рис. 32.4).

Рис. 32. 4. Спектр излучения рентгеновской трубки

Существование характеристических спектров рентгеновского излучения было обнаружено с помощью рентгеновских трубок. Позже было установлено, что такие спектры возникают при любой ионизации внутренних орбит химических элементов. Исследовав характеристические спектры различных химических элементов, Г. Мозли (1913 г.) установил следующий закон, носящий его имя.

Корень квадратный из частоты характеристического излучения есть линейная функция порядкового номера элемента:

где ν - частота спектральной линии, Z - атомный номер испускающего элемента, А, В - константы.

Закон Мозли позволяет определить атомный номер химического элемента по наблюдаемому спектру характеристического излучения. Это сыграло большую роль при размещении элементов в периодической системе.

32.4. Взаимодействие рентгеновского излучения с веществом. Закон ослабления

Существуют два основных типа взаимодействия рентгеновского излучения с веществом: рассеяние и фотоэффект. При рассеянии направление движения фотона изменяется. При фотоэффекте фотон поглощается.

1. Когерентное (упругое) рассеяние происходит тогда, когда энергия рентгеновского фотона недостаточна для внутренней ионизации атома (выбивания электрона с одной из внутренних оболочек). При этом изменяется направление движения фотона, а его энергия и длина волны не изменяются (поэтому это рассеяние и называется упругим).

2. Некогерентное (комптоновское) рассеяние происходит тогда, когда энергия фотона намного больше энергии внутренней ионизации А и: hv >> А и.

При этом электрон отрывается от атома и приобретает некоторую кинетическую энергию Е к. Направление движения фотона при комптоновском рассеянии изменяется, а его энергия уменьшается:

Комптоновское рассеяние связано с ионизацией атомов вещества.

3. Фотоэффект имеет место тогда, когда энергия фотона hv достаточна для ионизации атома: hv > А и. При этом рентгеновский квант поглощается, а его энергия расходуется на ионизацию атома и сообщение кинетической энергии выбитому электрону Е к = hv - А И.

Комптоновское рассеяние и фотоэффект сопровождаются характеристическим рентгеновским излучением, так как после выбивания внутренних электронов происходит заполнение вакантных мест электронами внешних оболочек.

Рентгенолюминесценция. В некоторых веществах электроны и кванты комптоновского рассеяния, а также электроны фотоэффекта вызывают возбуждение молекул, которое сопровождается излучательными переходами в основное состояние. При этом возникает свечение, называемое рентгенолюминесценцией. Люминесценция платиносинеродистого бария позволила Рентгену открыть Х-лучи.

Закон ослабления

Рассеяние рентгеновских лучей и фотоэффект приводят к тому, что по мере проникновения рентгеновского излучения вглубь первичный пучок излучения ослабляется (рис. 32.5). Ослабление носит экспоненциальный характер:

Величина μ зависит от поглощающего материала и спектра излучения. Для практических расчетов в качестве характеристики ослабле-

Рис. 32.5. Ослабление рентгеновского потока в направлении падающих лучей

где λ - длина волны; Z - атомный номер элемента; k - некоторая константа.

32.5. Физические основы использования

рентгеновского излучения в медицине

В медицине рентгеновское излучение применяется в диагностических и терапевтических целях.

Рентгенодиагностика - методы получения изображений внутренних органов с использованием рентгеновских лучей.

Физической основой этих методов является закон ослабления рентгеновского излучения в веществе (32.10). Однородный по сечению поток рентгеновского излучения после прохождения неоднородной ткани станет неоднородным. Эта неоднородность может быть зафиксирована на фотопленке, флуоресцирующем экране или с помощью матричного фотоприемника. Например, массовые коэффициенты ослабления костной ткани - Са 3 (РО 4) 2 - и мягких тканей - в основном Н 2 О - различаются в 68 раз (μ m кости /μ m воды = 68). Плотность кости также выше плотности мягких тканей. Поэтому на рентгеновском снимке получается светлое изображение кости на более темном фоне мягких тканей.

Если исследуемый орган и окружающие его ткани имеют близкие коэффициенты ослабления, то применяют специальные контрастные вещества. Так, например, при рентгеноскопии желудка обследуемый принимает кашеобразную массу сульфата бария (ВаSО 4), у которого массовый коэффициент ослабления в 354 раза больше, чем у мягких тканей.

Для диагностики используют рентгеновское излучение с энергией фотонов 60-120 кэВ. В медицинской практике используют следующие методы рентгенодиагностики.

1. Рентгеноскопия. Изображение формируется на флуоресцирующем экране. Яркость изображения невелика, и его можно рассматривать только в затемненном помещении. Врач должен быть защищен от облучения.

Достоинством рентгеноскопии является то, что она проводится в реальном режиме времени. Недостаток - большая лучевая нагрузка на больного и врача (по сравнению с другими методами).

Современный вариант рентгеноскопии - рентгенотелевидение - использует усилители рентгеновского изображения. Усилитель воспринимает слабое свечение рентгеновского экрана, усиливает его и передает на экран телевизора. В результате резко уменьшилась лучевая нагрузка на врача, повысилась яркость изображения и появилась возможность видеозаписи результатов обследования.

2. Рентгенография. Изображение формируется на специальной пленке, чувствительной к рентгеновскому излучению. Снимки производятся в двух взаимно перпендикулярных проекциях (прямая и боковая). Изображение становится видимым после фотообработки. Готовый высушенный снимок рассматривают в проходящем свете.

При этом удовлетворительно видны детали, контрастности которых отличаются на 1-2 %.

В некоторых случаях перед обследованием пациенту вводится специальное контрастное вещество. Например, йодсодержащий раствор (внутривенно) при исследовании почек и мочевыводящих путей.

Достоинствами рентгенографии являются высокое разрешение, малое время облучения и практически полная безопасность для врача. К недостаткам относится статичность изображения (объект нельзя проследить в динамике).

3. Флюорография. При этом обследовании изображение, полученное на экране, фотографируется на чувствительную малоформатную пленку. Флюорография широко используется при массовом обследовании населения. Если на флюорограмме находят патологические изменения, то пациенту назначают более детальное обследование.

4. Электрорентгенография. Этот вид обследования отличается от обычной рентгенографии способом фиксации изображения. Вместо пленки используют селеновую пластину, которая электризуется под действием рентгеновских лучей. В результате возникает скрытое изображение из электрических зарядов, которое можно сделать видимым и перенести на бумагу.

5. Ангиография. Этот метод применяется при обследовании кровеносных сосудов. Через катетер в вену вводится контрастное вещество, после чего мощный рентгеновский аппарат выполняет серию снимков, следующих друг за другом через доли секунды. На рисунке 32.6 показана ангиограмма в районе сонной артерии.

6. Рентгеновская компьютерная томография. Этот вид рентгеновского обследования позволяет получить изображение плоского сечения тела толщиной несколько мм. При этом заданное сечение многократно просвечивается под разными углами с фиксацией каждого отдельного изображения в памяти компьютера. Затем

Рис. 32.6. Ангиограмма, на которой видно сужение в канале сонной артерии

Рис. 32.7. Сканирующая схема томографии (а); томограмма головы в сечении на уровне глаз (б).

осуществляется компьютерная реконструкция, результатом которой является изображение сканируемого слоя (рис. 32.7).

Компьютерная томография позволяет различать элементы с перепадом плотности между ними до 1 %. Обычная рентгенография позволяет уловить минимальную разницу по плотности между соседними участками в 10-20 %.

Рентгенотерапия - использование рентгеновского излучения для уничтожения злокачественных образований.

Биологическое действие излучения заключается в нарушении жизнедеятельности особенно быстро размножающихся клеток. Очень жесткое рентгеновское излучение (с энергией фотонов примерно 10 МэВ) используется для разрушения раковых клеток, находящихся глубоко внутри тела. Для уменьшения повреждений здоровых окружающих тканей пучок вращается вокруг пациента таким образом, чтобы под его воздействием все время оставалась только поврежденная область.

32.6. Основные понятия и формулы

Продолжение таблицы

Окончание таблицы

32.7. Задачи

1. Почему в медицинских рентгеновских трубках пучок электронов ударяет в одну точку антикатода, а не падает на него широким пучком?

Ответ: чтобы получить точечный источник рентгеновских лучей, дающий на экране резкие очертания просвечиваемых предметов.

2. Найти границу тормозного рентгеновского излучения (частоту и длину волны) для напряжений U 1 = 2 кВ и U 2 = 20 кВ.

4. Для защиты от рентгеновского излучения используются свинцовые экраны. Линейный показатель поглощения рентгеновского излучения в свинце равен 52 см -1 . Какова должна быть толщина экранирующего слоя свинца, чтобы он уменьшил интенсивность рентгеновского излучения в 30 раз?

5. Найти поток излучения рентгеновской трубки при U = 50 кВ, I = 1мА. Анод изготовлен из вольфрама (Z = 74). Найти КПД трубки.

6. Для рентгенодиагностики мягких тканей применяют контрастные вещества. Например, желудок и кишечник заполняют массой сульфата бария (ВаSО 4). Сравнить массовые коэффициенты ослабления сульфата бария и мягких тканей (воды).

7. Что даст более густую тень на экране рентгеновской установки: алюминий (Z = 13, ρ = 2,7 г/см 3) или такой же слой меди (Z = 29, ρ = 8,9 г/см 3)?

8. Во сколько раз толщина слоя алюминия больше толщины слоя меди, если слои ослабляют рентгеновское излучение одинаково?

Похожие публикации